INFORME COES/DP/SPL-07-2021

Equivalente Externo del Sistema Ecuador-Colombia para la Interconexión Ecuador-Perú 500 kV

Máximas Transferencias Ecuador-Perú

SUB DIRECCIÓN DE PLANIFICACIÓN

Lima, 16 de febrero de 2021

EQUIVALENTE EXTERNO DEL SISTEMA ECUADOR-COLOMBIA PARA LA INTERCONEXIÓN ECUADOR-PERÚ 500 KV, MÁXIMAS TRANSFERENCIAS ECUADOR-PERÚ

Febrero-2021

ÍNDICE

1	A۱	NTECEDENTES	. 3
2	Ol	BJETIVO	. 5
3	AL	LCANCES	. 5
4	М	IETODOLOGÍA	. 6
5	Eq	quivalente Externo del Sistema Ecuador-Colombia	. 7
	5.1	Demanda y Generación del SEIN	. 7
	5.2	Validación del Equivalente Externo	. 8
	5.3	Parámetros del Equivalente Externo	11
6	Cc	onclusiones	15

EQUIVALENTE EXTERNO DEL SISTEMA ECUADOR-COLOMBIA PARA LA INTERCONEXIÓN ECUADOR-PERÚ 500 KV, MÁXIMAS TRANSFERENCIAS ECUADOR-PERÚ

Febrero-2021

LISTA DE FIGURAS

	smisión del proyecto de interconexión Ecuador - Perú 500
Figura N° 1.2: Sistema Interconectado Colom	ıbia-Ecuador-Perú considerando las interconexiones aíses
-	na, externa y punto de conexión de la Interconexión 6
<u> </u>	rio para la operación normal, sin Equivalente Externo, uador → Perú de 400 MW, avenida máxima demanda9
-	rio para la operación normal, con Equivalente Externo, µador → Perú de 400 MW, avenida máxima demanda9
Niña – Piura, sin Equivalente Externo,	rio para operación en contingencia, salida de L.T. 500 kV La máxima transferencia de potencia Ecuador → Perú de 400 10
Figura N° 5.4: Condición de estado estaciona Niña – Piura, con Equivalente Externo	rio para operación en contingencia, salida de L.T. 500 kV La , máxima transferencia de potencia Ecuador → Perú de 400
Figura N° 5.5: Corrientes de cortocircuito, fa Externo, máxima transferencia de po	lla fase a tierra en la barra Piura 500 kV, sin Equivalente tencia Ecuador → Perú de 400 MW, avenida máxima 11
Figura N° 5.6: Corrientes de cortocircuito, fa Externo, máxima transferencia de pot	lla fase a tierra en la barra Piura 500 kV, con Equivalente encia Ecuador → Perú de 400 MW, avenida máxima 11
LISTA DE TABLAS	
	ador y Perú, medido en la L.T. de 500 kV Piura-Pasaje, año 6
Tabla 5.1 : Balance de potencia entre Deman	da y Generación del SEIN para escenarios de máximas > Perú
Tabla 5.2 : Balance de potencia entre Deman	da y Generación del SEIN para escenarios de máximas uador
Tabla 5.4 : Parámetros del Equivalente Exterr	atos vigente (año 2020), periodo 2023-2026
Tabla 5.5 : Parámetros del Equivalente Exterr	s de potencia Ecuador $ ightarrow$ Perú
Tabla 5.6 : Parámetros del Equivalente Exterr	no del sistema Ecuador-Colombia para Cortocircuito nsferencias de potencia Ecuador → Perú14
Tabla 5.7 : Parámetros del Equivalente Exterr	no del sistema Ecuador-Colombia para Cortocircuito nsferencias de potencia Perú → Ecuador14

Febrero-2021

EQUIVALENTE EXTERNO DEL SISTEMA ECUADOR-COLOMBIA PARA LA INTERCONEXIÓN ECUADOR-PERÚ 500 KV, MÁXIMAS TRANSFERENCIAS ECUADOR-PERÚ

1 ANTECEDENTES

Con el desarrollo del proyecto de Interconexión Eléctrica Ecuador - Perú 500 kV se permitirá intercambios energéticos entre Ecuador y Perú, para aprovechar la complementariedad hidrológica y ante eventuales condiciones internas de déficit. Estos intercambios estarán basados en acuerdos comerciales y regulatorios de integración regional, proponiendo el beneficio mutuo a los países, mejorando las condiciones de calidad del servicio en los sistemas, y garantizando la integración de la producción de los futuros proyectos de generación que se desarrollan en Ecuador y Perú. Cabe resaltar que la interconexión eléctrica existente entre los sistemas de Ecuador y Perú, conformada por la línea de 220/230 kV Zorritos (Perú)-Machala (Ecuador) fue clasificada como enlace asíncrono, es decir, no permite la operación síncrona de los sistemas, y presenta beneficios como el intercambio de energía puntual y en situaciones de emergencia, atendiendo el suministro eléctrico de sistemas aislados cercanos a la interconexión.

En la siguiente figura se muestra la ubicación de las líneas de transmisión de 500 kV que comprende el proyecto de interconexión Ecuador - Perú 500 kV, con una longitud total aproximada de 640 km, las cuales conectan las subestaciones Chorrillos y Pasaje, en el lado de Ecuador, y Piura y La Niña, en el lado de Perú.

Fuente: Anteproyecto Interconexión en 500 kV Ecuador - Perú (Leme Engenharia, 2016)

Figura N° 1.1: Ubicación de las líneas de transmisión del proyecto de interconexión Ecuador - Perú 500 kV.

Dado que actualmente los sistemas de Colombia y Ecuador presentan una operación síncrona, que permite intercambios de potencia a través de los enlaces de transmisión entre Pomasqui (Ecuador) y Jamondino (Colombia), la futura interconexión Ecuador-Perú en 500 kV configurará

Febrero-2021

un sistema interconectado extenso, de más de 2000 km de longitud de línea de transmisión, entre los países de Colombia, Ecuador y Perú. En la siguiente figura se muestra el sistema Interconectado conjunto Colombia-Ecuador-Perú considerando las interconexiones regionales internacionales entre los países.

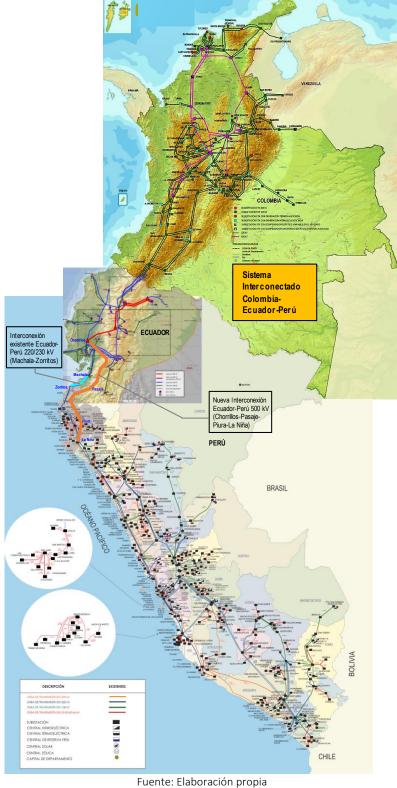


Figura N° 1.2: Sistema Interconectado Colombia-Ecuador-Perú considerando las interconexiones regionales internacionales entre los países.

EQUIVALENTE EXTERNO DEL SISTEMA ECUADOR-COLOMBIA PARA LA INTERCONEXIÓN ECUADOR-PERÚ 500 KV, MÁXIMAS TRANSFERENCIAS ECUADOR-PERÚ

Febrero-2021

En setiembre del 2019 se concluyó la "Actualización de los Estudios Eléctricos de la Interconexión Ecuador - Perú 500 kV", la cual fue desarrollada por COES (Comité de Operación Económica del Sistema Interconectado Nacional, Perú), CENACE (Operador Nacional de Electricidad, Ecuador) y CELEC EP TRANSELECTRIC (Corporación Eléctrica del Ecuador Unidad de Negocio Transelectric, Ecuador). Este estudio tuvo como objetivo determinar los valores máximos de las transferencias de potencia (importación y exportación) entre los países de Ecuador y Perú identificando sus factores limitantes. Asimismo, se revisó el dimensionamiento de la compensación reactiva del proyecto de Interconexión Eléctrica Ecuador - Perú 500 kV.

A fin de realizar los estudios necesarios en la etapa de Pre Operatividad de los proyectos de transmisión que permitan la interconexión eléctrica Ecuador-Perú 500 kV en el lado Peruano, se solicitó al COES la elaboración de un Equivalente Externo, que reduzca el sistema eléctrico conjunto de los países de Ecuador y Colombia (denominado sistema Ecuador-Colombia), para la realización de estudios eléctricos.

2 OBJETIVO

Elaborar un Equivalente Externo del sistema eléctrico Ecuador-Colombia, es decir, que reduzca el sistema Ecuatoriano, el cual se encuentra a su vez interconectado al sistema Colombiano, en el punto de conexión de la Interconexión Ecuador-Perú 500 kV definido en la barra de 500 kV de la subestación Pasaje.

3 ALCANCES

El presente estudio cubre los siguientes alcances:

- Las transferencias de potencia entre Ecuador y Perú se realizan exclusivamente a través de la línea de 500 kV Pasaje (Ecuador)-Piura (Perú); en consecuencia, se encuentra permanentemente fuera de servicio la línea de 220/230 kV Zorritos (Perú)-Machala (Ecuador).
- La red externa queda definida como el sistema eléctrico Ecuador-Colombia, donde el sistema Ecuatoriano se encuentra a su vez interconectado al sistema Colombiano a través de los enlaces de transmisión de 230 kV Jamondino (Colombia) Pomasqui (Ecuador).
- La red externa del sistema Ecuador-Colombia será substituida por una red más simple, de menor tamaño, en el punto de conexión de la Interconexión Eléctrica Ecuador-Perú 500 kV, definido en la barra de 500 kV de la subestación Pasaje (Ecuador). Esta red externa más simple se denomina como "Equivalente Externo".
- En el estudio de "Actualización de los Estudios Eléctricos de la Interconexión Ecuador-Perú 500 kV" se obtuvieron las máximas transferencias de potencia entre los sistemas de Ecuador y Perú, considerando habilitada la interconexión entre los sistemas Ecuador y Colombia, y considerando fuera de servicio la línea de 220/230 kV Zorritos-Machala. Cabe resaltar que en este estudio se consideró el ingreso del Proyecto de Línea de 500 kV Piura-Pasaje en el año 2022, y con ello se estudiaron las transferencias de potencia en la interconexión Ecuador-Perú para este año. Los resultados de las máximas transferencias entre Ecuador y Perú se muestran a continuación:

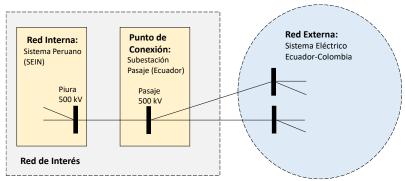
Febrero-2021

Tran	cfere	ncia	Ecuad	lor	\rightarrow	Perií	
Hall	siere	IICIa	ECUAC	IOI	\rightarrow	Peru	

Transferencia Ecadador / Fera								
Periodo Año 2022	Demanda	Máxima Transferencia (MW)*						
	Máxima	400						
Avenida	Media	600						
	Mínima	600						
	Máxima	600						
Estiaje	Media	600						
	Mínima	600						

Transferencia Perú → Ecuador**							
Periodo Año 2022	Demanda	Máxima Transferencia (MW)*					
	Máxima	520					
Avenida	Media	540					
	Mínima	620					
	Máxima	500					
Estiaje	Media	590					
	Mínima	650					

^{*} En LT 500 kV Pasaje - Piura, medido en forma referencial en Piura 500 kV


Tabla 3.1: Máximas transferencias entre Ecuador y Perú, medido en la L.T. de 500 kV Piura-Pasaje, año 2022

- Cabe resaltar que las máximas transferencias de Perú a Ecuador consideran que los efectos de las salidas en líneas de 500 kV en el área Norte del SEIN, antes del ingreso en el SEIN de los proyectos de Enlace de 500 kV Huánuco (Yaros)-Tocache-Celendín-Trujillo Nueva y Enlace de 500 kV Celendín-Piura, se cubren mediante una protección especial en el área Norte. Esta protección especial será implementada como parte de un Esquema de Separación de Áreas (ESA) ampliado en la interconexión entre los países de Ecuador y Perú, para la apertura inmediata de la línea de interconexión 500 kV (Pasaje-Piura) ante salida de líneas de 500 kV.
- A pesar de que la actualización de los estudios de interconexión Ecuador-Perú 500 kV fue realizada para escenarios del año 2022, se puede asumir que las máximas transferencias posibles entre Ecuador y Perú serán similares a las que serán encontradas cuando ingrese el proyecto de L.T. de 500 kV Piura-Pasaje, con fecha estimada de ingreso en el año 2024, debido que las topologías de los sistemas serán similares.

4 METODOLOGÍA

La metodología presenta los siguientes aspectos:

 El Equivalente Externo debe presentar un comportamiento similar comparado con la red externa, por lo que debe permitir simular las reacciones que produciría la red externa cuando ocurren alteraciones en la red de interés como, por ejemplo, variaciones de carga, contingencias, etc. En la siguiente figura se muestra la delimitación de las redes interna, externa y punto de conexión.

Fuente: Elaboración propia

Figura N° 4.1: Delimitación de las redes interna, externa y punto de conexión de la Interconexión Ecuador-Perú.

^{**} Incluye dos (2) circuitos en el enlace de 220 kV Chiclayo-Carhuaquero.

Febrero-2021

- El Equivalente Externo debe permitir la realización de los siguientes estudios eléctricos:
 - Análisis de estado estacionario para la operación normal y en contingencias, mediante ejecuciones de flujo de potencia; y
 - o Análisis de cortocircuitos.
- Para la elaboración del Equivalente Externo se considera la reducción de la red externa mediante el método de Ward Extendido, el cual es un equivalente no lineal que permite el análisis de estado estacionario mediante flujos de potencia. Asimismo, se considera un equivalente para análisis de cortocircuito asimétrico.
- El Equivalente Externo fue elaborado en la plataforma *PowerFactory DIgSilent* en la versión 17, dado que el archivo original de la base de datos del estudio de Interconexión Ecuador-Perú se desarrolló en esa versión del software.

5 Equivalente Externo del Sistema Ecuador-Colombia

5.1 Demanda y Generación del SEIN

En las siguientes tablas se muestra la información de demanda, generación (potencia activa y reactiva) y pérdidas de potencia del SEIN, como obtenida del estudio de "Actualización de los Estudios Eléctricos de la Interconexión Ecuador-Perú 500 kV" para los escenarios de máximas transferencias de potencia entre Ecuador y Perú. Cabe resaltar que este balance de potencia se obtuvo de la base de datos del estudio en mención, la cual se encontraba vigente en aquella oportunidad (año 2018), por lo que la demanda del año 2022 no corresponderá a la demanda prevista actualmente para este año. No obstante, los resultados de máximas transferencias pueden ser tomados dado que estos dependen principalmente de los cambios de topología de la red eléctrica. Asimismo, dado que los resultados de la proyección de demanda de estos últimos años han venido reduciendo la demanda prevista, la demanda de las tablas podría aproximarse a la demanda de 2024 prevista en la actual base de datos del SEIN.

Transferencia Ecuador → Perú

		Máxima	Deman	Demanda SEIN		Generación Convencional SEIN		Generación RER SEIN	
Periodo	Demanda	Transferencia (MW)*	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia SEIN (MW)
	Máxima	398.6	8544.6	2808.3	8378.0	1441.0	204.0	40.3	436.0
Avenida	Media	583.6	8611.4	2606.4	7996.7	1205.4	440.1	32.4	408.9
	Mínima	604.3	6783.2	1976.3	6347.0	499.8	204.0	4.4	372.0
	Máxima	602.9	8350.8	2760.0	7970.0	1285.1	204.0	34.1	426.0
Estiaje	Media	606.8	8210.8	2504.1	7552.1	906.8	425.6	34.6	373.8
	Mínima	601.5	6583.6	1915.6	6121.7	443.1	204.0	6.7	343.6

^{*} En LT 500 kV Pasaje - Piura, medido en Pasaje 500 kV.

Tabla 5.1: Balance de potencia entre Demanda y Generación del SEIN para escenarios de máximas transferencias de potencia Ecuador \rightarrow Perú.

Febrero-2021

Transferencia Perú → Ecuador

		Máxima	Demanda SEIN		Generación Convencional SEIN		Generación RER SEIN		Pérdidas de
Periodo	Demanda	Transferencia (MW)*	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia SEIN (MW)
	Máxima	531.2	8544.6	2808.3	9408.0	1822.4	204.0	41.9	536.2
Avenida	Media	551.4	8611.4	2606.4	9225.6	1624.1	440.1	33.6	502.9
	Mínima	613.3	6783.2	1976.3	7632.1	691.4	204.0	4.9	439.6
	Máxima	499.9	8350.8	2760.0	9180.6	1888.5	204.0	34.9	533.8
Estiaje	Media	580.1	8210.8	2504.1	8847.2	1395.6	425.6	35.2	481.9
	Mínima	645.6	6583.6	1915.6	7483.7	881.5	208.2	7.4	462.7

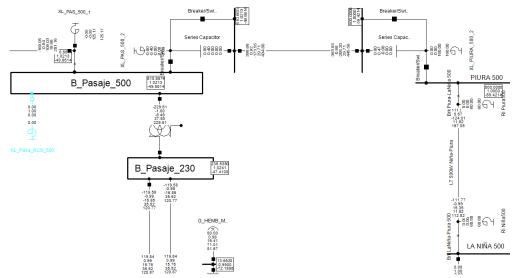
^{*} En LT 500 kV Pasaje - Piura, medido en Pasaje 500 kV.

Tabla 5.2: Balance de potencia entre Demanda y Generación del SEIN para escenarios de máximas transferencias de potencia Perú → Ecuador.

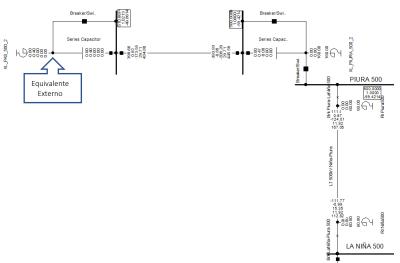
Asimismo, dado que los resultados de la proyección de demanda de estos últimos años han venido reduciendo la demanda prevista, la demanda de las tablas anteriores podría aproximarse a la demanda de 2024 prevista en la actual base de datos del SEIN. En la siguiente tabla se muestra la demanda del SEIN de la base de datos vigente (año 2020) para el periodo 2023-2026.

		Demano SE	da 2023 IN	Demano SE	da 2024 IN	Demanda 2026 SEIN		
Periodo	Demanda	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia Activa (MW)	Potencia Reactiva (MW)	Potencia Activa (MW)	Potencia Reactiva (MW)	
	Máxima	7934.1	2522.5	8523.9	2661.1	9436.2	2662.9	
Avenida	Media	7942.7	2569.8	8525.4	2703.7	9402.0	2636.5	
	Mínima	6107.1	1768.4	6617.5	1875.3	7338.7	1926.8	
	Máxima	7801.0	2478.5	8388.4	2616.5	9280.8	2608.9	
Estiaje	Media	7537.1	2435.1	8101.6	2561.5	8944.2	2489.7	
	Mínima	5951.2	1729.0	6457.1	1833.9	7159.5	1866.3	

Tabla 5.3: Demanda del SEIN de la base de datos vigente (año 2020), periodo 2023-2026.


5.2 Validación del Equivalente Externo

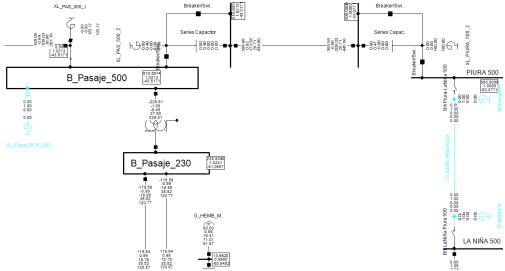
A modo de validación, se obtuvo el Equivalente Externo del escenario de máxima transferencia de potencia de Ecuador a Perú de 400 MW para avenida máxima demanda. Cabe resaltar que el Equivalente Externo considera la reducción de la red externa mediante el método de Ward Extendido, el cual es un equivalente no lineal que permite el análisis de estado estacionario mediante flujos de potencia; adicionalmente, se considera un equivalente para análisis de cortocircuito asimétrico.


Condición de Estado de Estado Estacionario - Operación Normal

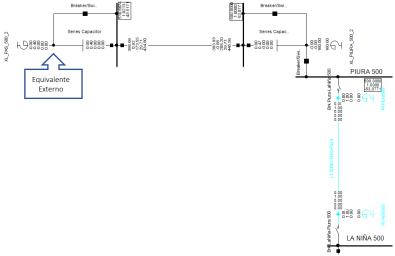
En las siguientes figuras se muestra los resultados de la condición de estado estacionario para la operación normal sin y con Equivalente Externo para el escenario de máxima transferencia de potencia de Ecuador a Perú de 400 MW para avenida máxima demanda. De las figuras se observan resultados similares en tensiones en barras, flujos de potencia activa y reactiva en líneas, y compensación reactiva, lo que valida el Equivalente Externo.

Febrero-2021

Figura N° 5.1: Condición de estado estacionario para la operación normal, sin Equivalente Externo, máxima transferencia de potencia Ecuador → Perú de 400 MW, avenida máxima demanda.


Figura N° 5.2: Condición de estado estacionario para la operación normal, con Equivalente Externo, máxima transferencia de potencia Ecuador → Perú de 400 MW, avenida máxima demanda.

Condición de Estado de Estado Estacionario - Operación en Contingencias


En las siguientes figuras se muestra los resultados de la condición de estado estacionario para la operación en contingencias, considerando la salida de la línea de 500 kV La Niña – Piura, sin y con Equivalente Externo para el escenario de máxima transferencia de potencia de Ecuador a Perú de 400 MW para avenida máxima demanda. Asimismo, de las figuras se observan resultados similares en tensiones en barras, flujos de potencia activa y reactiva en líneas, y compensación reactiva, lo que valida el Equivalente Externo.

Febrero-2021

Figura N° 5.3: Condición de estado estacionario para operación en contingencia, salida de L.T. 500 kV La Niña − Piura, sin Equivalente Externo, máxima transferencia de potencia Ecuador → Perú de 400 MW, avenida máxima demanda.

Figura N° 5.4: Condición de estado estacionario para operación en contingencia, salida de L.T. 500 kV La Niña − Piura, con Equivalente Externo, máxima transferencia de potencia Ecuador → Perú de 400 MW, avenida máxima demanda.

Corrientes de Cortocircuito

En las siguientes figuras se muestra los resultados de corrientes de cortocircuito, falla fase a tierra en la barra Piura 500 kV, sin y con Equivalente Externo para el escenario de máxima transferencia de potencia de Ecuador a Perú de 400 MW para avenida máxima demanda. De las figuras se observan resultados similares en las corrientes de cortocircuito, lo que valida el Equivalente Externo.

Febrero-2021

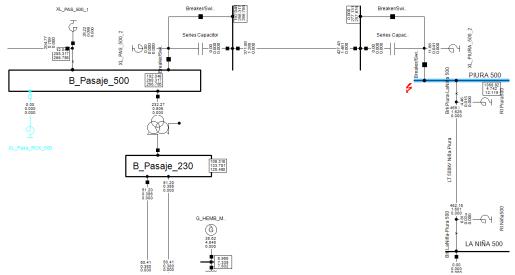
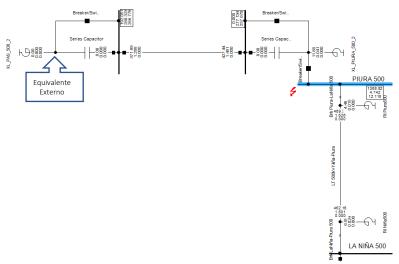



Figura N° 5.5: Corrientes de cortocircuito, falla fase a tierra en la barra Piura 500 kV, sin Equivalente Externo, máxima transferencia de potencia Ecuador → Perú de 400 MW, avenida máxima demanda.

Figura N° 5.6: Corrientes de cortocircuito, falla fase a tierra en la barra Piura 500 kV, con Equivalente Externo, máxima transferencia de potencia Ecuador → Perú de 400 MW, avenida máxima demanda.

5.3 Parámetros del Equivalente Externo

El Equivalente Externo fue obtenido en la plataforma *PowerFactory DlgSilent* en la versión 17, dado que el archivo original de la base de datos del estudio de Interconexión Ecuador-Perú se desarrolló en esa versión del software. Se utilizó el elemento "Fuente de Tensión AC" (*AC Voltage Source*) para representar el Equivalente Externo del sistema Ecuador-Colombia en el punto de conexión en barra de 500 kV de la subestación Pasaje.

En las siguientes tablas se muestran los parámetros del Equivalente Externo del sistema Ecuador-Colombia para Flujo de Potencia, para los escenarios de máximas transferencias de potencia entre Ecuador y Perú.

EQUIVALENTE EXTERNO DEL SISTEMA ECUADOR-COLOMBIA PARA LA INTERCONEXIÓN ECUADOR-PERÚ 500 KV, MÁXIMAS TRANSFERENCIAS ECUADOR-PERÚ Febrero-2021

Transferencia Ecuador \rightarrow Perú

Máxima Transfer	encia (MW)*:	398.6	583.6	604.3	602.9	606.8	601.5
Parámetro de Equivalente Externo para			Avenida			Estiaje	
Flujo de Potencia	Unidad	Máxima	Media	Mínima	Máxima	Media	Mínima
Name		eqVac-0(1)	eqVac-0(2)	eqVac-0(3)	eqVac-0(4)	eqVac-0(5)	eqVac-0(6)
Grid			1	Interconexione	s Ecuador Peri	1	
usetp	p.u.	1.021335	1.022621	1.019516	1.001271	1.014315	1.030668
phisetp	deg	-19.98685	-1.050559	11.81188	8.174088	0.9881861	-6.750358
Controlled Node	ElmTerm						
R1	Ohm	12.1004629	11.6964508	10.3500736	9.24036414	10.2394983	9.68741163
X1	Ohm	79.3280369	80.9974331	83.0151786	78.3268137	84.1614567	86.8289735
Voltage Control	ElmLdfctrl*						
Angle Control	ElmLdfctrl*						
Pload	MW	0	0	0	0	0	0
Qload	Mvar	0	0	0	0	0	0
Pzload	MW	-4.6235344	-3.8094968	-11.485385	-21.464293	-13.116431	-8.4734223
Qzload	Mvar	0	0	0	0	0	0
Prim. Frequency Bias	MW/Hz	0	0	0	0	0	0
Sec. Frequency Bias	MW/Hz	0	0	0	0	0	0
Pgen	MW	393.84104	579.626994	592.37187	581.399319	593.339738	592.50276
Qgen	Mvar	-6.6546346	21.3623165	18.3239193	-25.430701	7.5447694	42.3747593
Resistance	Ohm	0	0	0	0	0	0
Reactance	Ohm	54.0664691	54.7244939	100.456012	107.039213	111.253034	115.559171
usetp0	p.u.	0	0	0	0	0	0
phisetp0	deg	0	0	0	0	0	0
RO	Ohm	6.22639994	6.21733753	6.20842803	6.23284448	6.21804228	6.47571927
XO	Ohm	72.4727134	72.4917805	72.5179444	72.4455777	72.490341	74.5390744
usetp2	p.u.	0	0	0	0	0	0
phisetp2	deg	0	0	0	0	0	0
R2	Ohm	9.50916275	9.19301619	7.9770069	7.63236248	8.32916831	7.89393771
X2	Ohm	74.1305456	75.3474882	76.5648756	73.7688218	78.7482128	80.8593123
Can be considered as a potential slack		0	0	0	0	0	0

^{*} En LT 500 kV Pasaje - Piura, medido en Pasaje 500 kV.

Tabla 5.4: Parámetros del Equivalente Externo del sistema Ecuador-Colombia para Flujo de Potencia, escenarios de máximas transferencias de potencia Ecuador → Perú.

EQUIVALENTE EXTERNO DEL SISTEMA ECUADOR-COLOMBIA PARA LA INTERCONEXIÓN ECUADOR-PERÚ 500 KV, MÁXIMAS TRANSFERENCIAS ECUADOR-PERÚ Febrero-2021

Transferencia Perú \rightarrow Ecuador

Máxima Transfer	encia (MW)*:	531.2	551.4	613.3	499.9	580.1	645.6
Parámetro de Equivalente Externo para		Avenida			Estiaje		
Flujo de Potencia	Unidad	Máxima	Media	Mínima	Máxima	Media	Mínima
Name		eqVac-0(7)	eqVac-0(8)	eqVac-0(9)	eqVac-0(10)	eqVac-0(11)	eqVac-0(12)
Grid			1	Interconexione	s Ecuador Peru	1	
usetp	p.u.	1.031935	1.028018	1.026844	1.000787	1.027341	1.029906
phisetp	deg	-72.01567	-72.65244	-66.94353	-69.9996	-77.84376	-71.74897
Controlled Node	ElmTerm						
R1	Ohm	11.9369586	11.3835249	10.1517904	8.88679473	10.0748999	9.60756534
X1	Ohm	79.993158	81.0831559	83.24942	77.4271347	84.3463877	86.9067937
Voltage Control	ElmLdfctrl*						
Angle Control	ElmLdfctrl*						
Pload	MW	0	0	0	0	0	0
Qload	Mvar	0	0	0	0	0	0
Pzload	MW	-24.850882	-21.418531	-10.488651	-19.543371	-9.1203659	-12.680643
Qzload	Mvar	0	0	0	0	0	0
Prim. Frequency Bias	MW/Hz	0	0	0	0	0	0
Sec. Frequency Bias	MW/Hz	0	0	0	0	0	0
Pgen	MW	-557.70282	-574.04755	-624.33204	-519.53932	-589.69653	-659.05419
Qgen	Mvar	113.384893	110.624333	128.595419	82.2944852	118.404609	147.176224
Resistance	Ohm	0	0	0	0	0	0
Reactance	Ohm	107.057337	73.27843	106.315459	87.1873893	91.3439617	106.78881
usetp0	p.u.	0	0	0	0	0	0
phisetp0	deg	0	0	0	0	0	0
RO	Ohm	6.22399286	6.21626099	6.20724555	6.22872149	6.21649067	6.47511582
X0	Ohm	72.473534	72.4921356	72.5182604	72.4678634	72.4908589	74.5392635
usetp2	p.u.	0	0	0	0	0	0
phisetp2	deg	0	0	0	0	0	0
R2	Ohm	9.35562836	8.95210177	7.82600109	7.35189764	8.19799756	7.83099384
X2	Ohm	74.625437	75.3935015	76.726094	72.9509448	78.8854082	80.9174057
Can be considered as a potential slack		0	0	0	0	0	0

^{*} En LT 500 kV Pasaje - Piura, medido en Pasaje 500 kV.

Tabla 5.5: Parámetros del Equivalente Externo del sistema Ecuador-Colombia para Flujo de Potencia, escenarios de máximas transferencias de potencia Perú → Ecuador.

En las siguientes tablas se muestran los parámetros del Equivalente Externo del sistema Ecuador-Colombia para Cortocircuito Completo, para los escenarios de máximas transferencias de potencia entre Ecuador y Perú.

EQUIVALENTE EXTERNO DEL SISTEMA ECUADOR-COLOMBIA PARA LA INTERCONEXIÓN ECUADOR-PERÚ 500 KV, MÁXIMAS TRANSFERENCIAS ECUADOR-PERÚ Febrero-2021

Transferencia Ecuador \rightarrow Perú

Máxima Transferencia (MW)*:		398.6	583.6	604.3	602.9	606.8	601.5	
Parámetro de Equivalente Externo	Unidad		Avenida		Estiaje			
para Cortocircuito Completo	Unidad	Máxima	Media	Mínima	Máxima	Media	Mínima	
Name		eqVac-0(1)	eqVac-0(2)	eqVac-0(3)	eqVac-0(4)	eqVac-0(5)	eqVac-0(6)	
Grid				Interconexione	s Ecuador Peru			
R1	Ohm	12.10046287	11.69645079	10.35007363	9.240364136	10.23949831	9.687411631	
X1	Ohm	79.32803687	80.99743309	83.01517858	78.32681375	84.16145666	86.82897347	
Transient = Subtransient Impedance		0	0	0	0	0	0	
R1s	Ohm	15.80691018	15.42368879	14.02129999	12.16402591	13.42912446	13.26771399	
X1s	Ohm	85.05300255	87.41298878	90.70705659	83.83084041	90.10248783	94.78786466	
RO	Ohm	6.226399945	6.217337529	6.208428032	6.232844485	6.218042276	6.47571927	
XO	Ohm	72.47271341	72.4917805	72.51794438	72.44557775	72.49034096	74.53907443	
R2	Ohm	9.50916275	9.193016186	7.977006898	7.632362478	8.32916831	7.893937706	
X2	Ohm	74.13054559	75.34748818	76.56487561	73.76882185	78.74821283	80.85931229	

^{*} En LT 500 kV Pasaje - Piura, medido en Pasaje 500 kV.

Tabla 5.6: Parámetros del Equivalente Externo del sistema Ecuador-Colombia para Cortocircuito Completo, escenarios de máximas transferencias de potencia Ecuador → Perú.

Transferencia Perú ightarrow Ecuador

Máxima Transferencia (MW)*:		531.2	551.4	613.3	499.9	580.1	645.6	
Parámetro de Equivalente Externo	Unidad		Avenida		Estiaje			
para Cortocircuito Completo	Unidad	Máxima	Media	Mínima	Máxima	Media	Mínima	
Name		eqVac-0(7)	eqVac-0(8)	eqVac-0(9)	eqVac-0(10)	eqVac-0(11)	eqVac-0(12)	
Grid				Interconexione	s Ecuador Peru			
R1	Ohm	11.93695856	11.38352485	10.15179037	8.886794728	10.0748999	9.607565341	
X1	Ohm	79.99315796	81.08315588	83.24942002	77.42713466	84.34638769	86.90679368	
Transient = Subtransient Impedance		0	0	0	0	0	0	
R1s	Ohm	15.67679166	15.00571945	13.75961329	11.65394987	13.21736205	13.15565994	
X1s	Ohm	85.99447334	87.58351793	91.07856141	82.83819506	90.39754851	94.92237753	
RO	Ohm	6.223992862	6.216260988	6.20724555	6.228721492	6.216490668	6.475115817	
XO	Ohm	72.47353401	72.49213555	72.51826043	72.46786339	72.49085887	74.53926346	
R2	Ohm	9.355628364	8.952101773	7.826001088	7.351897636	8.19799756	7.830993842	
X2	Ohm	74.62543701	75.39350148	76.72609403	72.95094478	78.88540816	80.91740573	

^{*} En LT 500 kV Pasaje - Piura, medido en Pasaje 500 kV.

Tabla 5.7: Parámetros del Equivalente Externo del sistema Ecuador-Colombia para Cortocircuito Completo, escenarios de máximas transferencias de potencia Perú → Ecuador.

Febrero-2021

6 Conclusiones

El estudio presenta las siguientes conclusiones:

- La red externa se define como el sistema eléctrico Ecuador-Colombia, donde el sistema Ecuatoriano se encuentra a su vez interconectado al sistema Colombiano a través de los enlaces de transmisión de 230 kV Jamondino (Colombia) Pomasqui (Ecuador). La red externa del sistema Ecuador-Colombia se substituyó por una red más simple, de menor tamaño, en el punto de conexión de la Interconexión Eléctrica Ecuador-Perú 500 kV, definido en la barra de 500 kV de la subestación Pasaje (Ecuador). Esta red externa más simple se denomina como "Equivalente Externo".
- Se considera que las transferencias de potencia entre Ecuador y Perú se realizan exclusivamente a través de la línea de 500 kV Pasaje (Ecuador)-Piura (Perú); en consecuencia, se encuentra permanentemente fuera de servicio la línea de 220/230 kV Zorritos (Perú)-Machala (Ecuador). A partir de ello se determinó el Equivalente Externo usando los resultados del estudio de "Actualización de los Estudios Eléctricos de la Interconexión Ecuador-Perú 500 kV", la cual fue desarrollada por COES, CENACE y CELEC EP TRANSELECTRIC (Ecuador) en el año 2019.
- Se validaron los resultados del Equivalente Externo en la condición de estado estacionario para la operación normal, en contingencias y para análisis de cortocircuito para los escenarios de máxima transferencia de potencia entre Ecuador y Perú. De los resultados se observan valores similares en tensiones en barras, flujos de potencia activa y reactiva en líneas, y compensación reactiva, corrientes de cortocircuitos lo que valida el Equivalente Externo.

Fecha	Versión	N° Informe	Elaborado	Revisado	Aprobado
16.02.2021	1	COES/DP-SPL-0X-2021	MB	MB	EB